Learn Kubernetes The Easy Way with Tutorials, Comics, and Guides

4 MIN READ
MIN READ

Want to learn Kubernetes but don’t know where to start? I was in the same boat, and after reading numerous Kubernetes tutorials, I realized there had to be an easier way for beginners to learn.Having recently joined LogDNA, I’m going to share what I learned in the past two weeks, as well as the best resources I found - comics, guides, tutorials - all so you can go from zero to Kubernetes expert in no time.Full disclosure, I started out building php and wordpress sites long ago, and I am mostly familiar with “ancient” self hosted monolithic applications. I'm a newbie when it comes to containers and container orchestration.Surprisingly, of all resources, it was through a series of comics that I found my bearings of what Docker containers and Kubernetes is. The first and best was created by Google: Smooth Sailing with Kubernetes. I highly recommend reading this first.

What Are Containers?

The most familiar reference that I have to compare containers to are Virtual Machines. Virtual Machines offer isolation at the hardware level, where a server offers guest operating systems to run on top of it. Not only VMWare but Microsoft Hyper-V, Citrix XenServer, and Oracle VirtualBox all with Hypervisors that enabled hardware virtualization and let each guest OS have access to CPU, memory and other resources. The limitations with VM was that each guest operating system had a large footprint of its own full OS image, memory and storage requirements. So scaling them was costly and the applications weren’t portable between hosting providers, and private/public clouds.Containers sit on top of the physical hardware and its host operating system to share the host OS’ kernel, binaries, and libraries. This way they’re much more light weight with image sizes in the megabytes instead of gigabytes and can start up in seconds rather than minutes. Along with obvious performance benefits, they also reduce management overhead of updating and patching full operating systems and they’re much more portable to different hosting providers. Multiple containers can run on a single host OS which saves operating costs.Consolia’s comic offers a great visualization of the difference between VM and Containers: And xkcd offers offers some humor on containers.Docker wanted to allow developers to create, deploy and run applications through the use of containers. With Docker containers, they focused on faster deployment speeds, application portability, and reuse. Docker does not create an entire virtual operating system and will require that the components that are not already on the host OS to be packaged inside the container. Applications will be packaged up with exactly what they need to run, no more and no less. Some interesting information on Docker containers and how incredibly quickly they’ve been adopted around the world:

  • It was only released in 2014
  • Over 3.5M applications have been placed in containers using Docker
  • 37B containerized apps have been downloaded so far

What is Kubernetes?

This Illustrated Children’s Guide to Kubernetes is really good at explaining the need for Kubernetes.Google created and open sourced the Kubernetes orchestration system for docker containers. It is used to automate the deployment, scaling and management of containerized applications. Google runs over 2 billions containers per week and built Kubernetes to be able to do so at worldwide scale. The idea is to provide tools for running distributed systems in production like load balancing, rolling updates, resource monitoring, naming and discovery, auto-scaling, mounting storage systems, replicating application instances, checking the health of applications to log access, and support for introspection.Kubernetes allows developers to create and manage clusters and scale them. Brian Dorsey’s talk at GOTO 2015 helped get from concept to seeing a real life example of deployment, replication and updates within an hour.Side note, I’m currently reading Google’s SRE book and awe-struck by their story of scaling up.

How to Get Started

I started with the official docs of Kubernetes Basics And then followed this Hello World Mini Kubes tutorial. I’m just making my way through this excellent tutorial now called Kubernetes the Hard Way.So far, now that I have a basic understanding of Containers and Kubernetes, I’m really excited at all its possibilities. It’s incredible to see that such powerful tools are available to all, both for developers to do CI/CD and especially for devops to scale, maintain 24/7 availability regardless of what happens and get a good night’s rest without alerts of catastrophic failures.I'm also realizing that using Kubernetes also requires the use of other additional tools like Helm for managing Kubernetes packages and expedites the need for centralized logging and monitoring tools. It's not as simple as logging into a server to look at a log file anymore when you're dealing with many replicas and nodes that start and stop on the fly. As you come up with your Kubernetes logging strategy, here are some key Kubernetes metrics to log. It’s cool to see how LogDNA solves this integration with Kubernetes better than any other log management solution in the market. You have a choice of doing this yourself or get up and running with just two lines.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    Mezmo + Catchpoint deliver observability SREs can rely on
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines