The Differences Between Monitoring Containerized Apps and Non-Containerized Apps

4 MIN READ
MIN READ

Containerized apps provide a nifty solution to package up applications along with their dependencies, and for the whole encapsulated process to be run on a host system. This technology is undeniably popular due to its ability to allow developers to create flexible, scalable, reliable solutions in a quicker amount of time. It has enabled more freedom in choosing the technology we use in our applications and has brought development and production environments closer to parity. Containerized apps are managed by a container engine (with the important task of abstracting away the application and bundling it up in a self-contained manner) and runs on an environment layer that is situated between the application and the hosting server (which can be a virtual machine or bare-metal servers). A traditional application, on the other hand, is understood to have an infrastructure where applications run directly on VMs or bare-metal servers.This paradigm shift in development necessitates a new way of monitoring our applications. Traditional monitoring tools and strategies built for physical and virtual hosting environments are generally insufficient in the world of containerized apps. This article will explore what has changed and what has remained relatively stable in application and systems monitoring.

Qualitative vs. Quantitative Monitoring

Monitoring from a qualitative perspective can be assessed in a high-level (and black box) manner. Items of concern would include whether a service is up and running. For example, is this HTTP server serving a 200 OK for this specific URI? It can also be assessed in a lower-level approach: Is this machine and/or this process running? Does this log file get updated regularly? From the high-level point of view, traditional and containerized apps are assessed the same way.Monitoring through a quantitative lens means concerning yourself with things like how many resources are being used, how fast responses are appearing, etc. From a low-level perspective, monitoring becomes starkly different for containerized apps. A lot of traditional mechanisms don’t map well to containers. (For instance, we cannot assess the on/off state for a container and we often cannot ping a container.)To compensate for this, containerized apps often offer health check mechanisms that can be more useful than simply pinging a server to see whether it is up. Docker and Kubernetes both have health check tools ingrained in their systems which can check in and inform on whether everything is working as it should be. Leveraging the health check features of these systems with a good feedback loop means that monitoring containerized applications can reduce more risk by enabling early diagnosis and allowing problems to be caught and solved before they get out of hand. Metrics such as response time and error rates are unchanged between containerized and traditional applications, but resource metrics are a bit different between containers and virtual machines since memory usage does not have the same meaning and can’t often be compared. Container resource utilization becomes interesting because containers have multiple isolated perimeters. This is a crucial matter because you need to consider things like the CPU utilization of a container instance and the aggregate usage for the host it is running on.

For Containerized Apps, Dynamic Monitoring is Key

Containerized apps most likely require time-series management systems that are highly dynamic. This is not specific to containers, but becomes almost impossible to avoid when working with containers since it is normal to add and remove instances all the time, which is something rarely done in traditional application infrastructures.To keep track of all of these moving parts and the fleeting nature of the data generated, it is vital to embed monitoring into containers right from the beginning and keep tabs on the large volume of logs and time-series metrics which, in turn, require speedy analysis. Monitoring tools of a more traditional variety tend to fall short in such dynamic environments that make use of containerized apps.

Conclusion

The advent of containerized applications has brought along a slew of give-and-takes. It has facilitated the application development and deployment process, but has also posed a lot of new and unique challenges to the way that effective monitoring is conducted. More and more applications will shift to the cloud and make use of containers, and it necessitates a new way of thinking about lifecycle management and an adoption of new tools and strategies that are tailored for a dynamic climate.Coming up with a centralized logging strategy is critical with containerized application. For Kubernetes, check this post to see the top metrics to log. LogDNA is a centralized log management platform that has the simplest integration for Kubernetes with just two kubectl lines.

By Daisy Tsang

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    Mezmo + Catchpoint deliver observability SREs can rely on
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines