Getting Started with Google Kubernetes Engine (GKE): A Beginner's Guide

4 MIN READ
MIN READ

There's no shortage of providers willing to host your containers. Many of the world's biggest cloud platforms offer Kubernetes as a service, including features such as automatic scalability and high availability. However, Google Cloud Platform (GCP) stands out as perhaps the best tool for building and hosting a Kubernetes cluster for a number of reasons. In this article, we'll present these reasons and why GCP offers a better Kubernetes experience than other providers.

Why Google Cloud Platform?

Google has a unique advantage when it comes to Kubernetes. Google created Borg, the container orchestration system that laid the groundwork for Kubernetes. Not only does Google know the ins and out of Kubernetes better than anyone else, but GKE tends to receive new features faster than other hosted Kubernetes services.Google Kubernetes Engine (GKE) also offers a streamlined process for spinning up Kubernetes clusters. The Kubernetes master—which runs the Kubernetes control API server, scheduler, and other core components—is fully abstracted away and managed by GKE for free. Containers run on worker nodes, which are Google Compute Engine (GCE) instances that you can either provision yourself or scale automatically based on demand. Since GKE runs unmodified Kubernetes, you can interact with your cluster using standard management tools such as kubectl.GKE also integrates well with other GCP services. If you already host applications, services, or other workloads on GCP, integrating those workloads with your Kubernetes application is significantly easier with GKE.Next, we'll walk through the process of provisioning a new Kubernetes cluster on GKE.

Creating a New GKE Cluster

Creating a cluster in GKE is very straightforward. You can use either the browser-based Google Cloud Console, or the Google Cloud SDK. If this is your first time using GKE, you may need to enable the GKE API first. For this article, we'll create a cluster using the Google Cloud Console.With the Google Cloud Console open, select Kubernetes Engine from the left-hand menu and click Create cluster to open the cluster creation menu.

GKE Getting Started

GKE provides multiple preconfigured cluster templates, from minimal test clusters to high availability and GPU accelerated clusters. These templates only provide a starting point; you can still customize the cluster however you choose. For now, select a Standard cluster, which creates 3 moderately sized worker nodes.Enter a name for your cluster in the Name field. The Location type field determines whether your worker nodes are located in a single compute zone (zonal), or distributed across multiple compute zones within a region (regional). Regional clusters can improve availability and resilience by spreading your workers across multiple data centers, keeping your cluster running even if a zone goes offline. However, regional clusters can also incur additional charges. For this example, stick with the default Zonal location type and select a Zone close to your location.

GKE Cluster Name

Next, use the Master version field to select the Kubernetes version that your cluster will deploy with. This only determines the initial version of Kubernetes. Google Kubernetes Engine will automatically upgrade your cluster for you, and you can upgrade manually at any time after deployment.Node pools separate your worker nodes into distinct groups. Node pools make it easier to organize worker nodes by zone or Machine type, which is the Google Compute Engine (GCE) template used to provision the node. Each node in a pool is identical in terms of CPU, RAM, storage, and operating system. This makes it easy to organize nodes by zone or machine type. Note that the Machine type plays a significant role in your cluster's overall cost, so consider how much capacity you need to begin with and scale up from there.

GKE Node Pools

The Advanced Edit button lets you modify additional settings, such as cluster autoscaling, automatic upgrades, and assigned service accounts. These settings go beyond the scope of this post, but are important to know when deploying a production cluster.Finally, click Create to provision and deploy your new cluster.

Managing Your GKE Cluster

Once your cluster has finished deploying, you can immediately begin deploying workloads to it. From the cluster list, click the Connect button next to your new cluster. There are three options for managing your GKE cluster:

  1. Configure the kubectl command line utility on your local workstation using the gcloud command provided
  2. Use the Cloud Shell to run kubectl
  3. Use the Workloads dashboard to deploy workloads via the Cloud Console

For this example, we'll use the Cloud Shell to manage the cluster. The Cloud Shell is a virtual console that appears directly in your browser, letting you access your cluster without any additional software or configuration. To open it, click Run in Cloud Shell. The command that appears in the Shell grants the shell access to your cluster. To run it, press Enter.Once the command is complete, check the state of your cluster by running kubectl cluster-info:

user@cloudshell:~ (intro-to-gke)$ kubectl cluster-info
Kubernetes master is running at https://[cluster IP address]

GLBCDefaultBackend is running at https://[cluster IP address]/api/v1/namespaces/kube-system/services/default-http-backend:http/proxy

Heapster is running at https://[cluster IP address]/api/v1/namespaces/kube-system/services/heapster/proxy

KubeDNS is running at https://[cluster IP address]/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

Metrics-server is running at https://[cluster IP address]/api/v1/namespaces/kube-system/services/https:metrics-server:/proxy


You can verify that each of your nodes is active using kubectl get nodes:

$ kubectl get nodes
gke-[cluster name]-[pool name]-76a685e6-3s9c   Ready 9m v1.10.11-gke.1
gke-[cluster name]-[pool name]-76a685e6-jh2v   Ready 9m v1.10.11-gke.1
gke-[cluster name]-[pool name]-76a685e6-nvbh   Ready 9m v1.10.11-gke.1

With your cluster up and running, you can use any of these three methods to deploy workloads, manage nodes, and enable services such as load balancing and DNS. The GKE Marketplace offers pre-packaged production applications that you can install with a single click. You can also use other GCP services to add additional functionality such as persistent storage via GCE, metrics collection via Stackdriver, and identity and access management (IAM).

Moving Forward with GKE

Google Kubernetes Engine offers a fast and easy solution for deploying a production-grade Kubernetes cluster. In a matter of minutes, you can have your containerized applications and services running in a fully managed Kubernetes environment.At LogDNA, we're big fans of Kubernetes. We make it easy for you to collect, ingest, and monitor Kubernetes logs, no matter the size or distribution of your cluster. Two commands is all you need to monitor your master, your nodes, and your applications.To learn more about LogDNA, contact us, visit our website, or sign up for a 14-day free trial.Also, check out our Kubernetes logging guide.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    Mezmo + Catchpoint deliver observability SREs can rely on
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines