The Impact of Containerization on DevOps

4 MIN READ
MIN READ

Ever since its formal introduction in 2008, DevOps has helped organizations shorten the distance from development to production. Software teams are delivering changes faster without sacrificing quality, stability, or availability. To do this, developers and IT operations staff have started working closely together to create a faster, more efficient pipeline to production. Around the same time, containers started transforming the way we develop and deploy applications. 20% of global organizations today run containerized applications in production, and more than 50% will do so by 2020. But how has the growth of containerization impacted DevOps, and where will that lead us in the future?

Thinking Differently About Applications

Not too long ago, applications were deployed as large, bulky, monolithic packages. A single build contained everything needed to run the entire application, which meant that changing even a single function required a completely new build. This had a huge impact on operations, since upgrading an application meant having to stop the application, replace it with the new version, and start it up again. Virtual machines and load balancing services removed some of the pain, but the inefficiency of managing multiple virtual machines and dedicated servers made it difficult to push new features quickly.Containerization allowed us to split up these monolithic applications into discrete and independent units. Like VMs, containers provide a complete environment for software to run independently of the host environment. But unlike VMs, containers are short-lived and immutable. Instead of thinking of containers as lightweight VMs, we need to think of them more as heavy processes. For developers, this means breaking down monolithic applications into modular units. Functions in the original monolith are now treated as services to be called upon by other services. Instead of a single massive codebase, you now have multiple smaller codebases specific to each service. This allows for much greater flexibility in building, testing, and deploying code changes.This idea of breaking up applications into discrete services has its own name: microservices. In a microservice architecture, multiple specialized services work together to perform a bigger service. The kicker is that any one service can be stopped, swapped out, restarted, and upgraded without affecting any of the other services. One developer can fix a bug in one service while another developer adds a feature to another service, and both can occur simultaneously with no perceivable downtime. Containerization is the perfect vessel for microservices, as they provide the framework to deploy, manage, and network these individual services.

Giving Power to Developers

Containerization also empower developers to choose their own tools. In the old days, decisions about an application's language, dependencies, and libraries had far-reaching effects on both development and operations. Test and production environments would need to have the required software installed, configured, and fully tested before the application could be deployed. With containers, the required software travels with the application itself, giving developers more power to choose how they run their applications.Of course, this doesn't mean developers can just pick any language or platform for their containers. They still need to consider what the container is being used for, what libraries it requires, and how long it will take to onboard other developers. But with the flexibility and ease of replacing containers, the impact of this decision is much less significant than it would be for a full-scale application.

Streamlining Deployments

Containerization doesn't just make developers' lives easier. With containers providing the software needed to run applications, operators can focus on providing a platform for the containers to run on. Orchestration tools like Docker Swarm and Kubernetes have made this process even easier by helping operators manage their container infrastructure as code. Operators can simply declare what the final deployment should look like, and the orchestrator automatically handles deploying, networking, scaling, and mirroring the containers.Orchestration tools have also become a significant part of continuous integration and continuous deployment (CI/CD). Once a new base image has been built, a CI/CD tool like Jenkins can easily call an orchestration tool to deploy the container or replace existing containers with new versions generated from the image. The lightweight and reproducible nature of containers makes them much faster to build, test and deploy in an automated way than even virtual machines.When combined, CI/CD and container orchestration means fast, automated deployments to distributed environments with almost no need for manual input. Developers check in code, CI/CD tools compile the code into a new image and perform automated tests, and orchestration tools seamlessly deploy containers based on the new image. Except for environment-specific details such as database connection strings and service credentials, the code running in production is identical to the code running on the developer's machine. This is how companies like Etsy manage to deploy to production up to 50 times per day.

Security From the Start

Despite the recent publicity, volume, and scale of data breaches in IT systems, security is often treated as an afterthought. Only 18% of IT professionals treat security as a top priority for development, and 36% of IT organizations don't budget enough for security. Surprisingly though, most feel security would be beneficial development: 43% believe fixing flaws during development is easier than patching in changes later, and only 17% believe that adding security to the development process will slow down DevOps.Combining security and DevOps is what led to DevSecOps. The goal of DevSecOps is to shift security left in the software development lifecycle from the deployment phase to the development phase, making it a priority from the start. Of course, this means getting developers on-board with developing for security in addition to functionality and speed. In 2017, only 10 to 15% of organizations using DevOps managed to accomplish this."Security is seen as the traditional firewall to innovation and often has a negative connotation. With shifting security left, it's about helping build stuff that's innovative and also secure."- Daniel Cuthbert, Global Head of Cyber Security Research at Banco Santander (Source)As DevSecOps becomes more ingrained in development culture, developers won't have a choice but to embrace security. The immutable nature of containers make them impractical to patch after deployment, and while operations should continue monitoring for vulnerabilities, the responsibility for fixing for these vulnerabilities will still fall to developers. The good news is that with containers, vulnerabilities can be fixed, built, tested, and re-deployed up to 50% faster than with traditional application development methods.

Moving Forward

Although DevOps and containerization are still fairly new concepts, they've already sparked a revolution in software development. As the tools and technologies continue to mature, we'll start to see more companies using containers to build, change, test, and push new software faster. Learn more about containers from LogDNA!

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines
    6 Steps to Implementing a Telemetry Pipeline
    Webinar Recap: Taming Data Complexity at Scale