Log Alerts & Log Monitoring: Best Practices

4 MIN READ
MIN READ

Application logs are more than just tools for root cause analysis. They’re also a foundation for proactive incident response, real-time alerting, and insight into patterns that influence application behavior. Logs are just thousands of lines of raw data, but they can be parsed and leveraged to provide a better understanding of what goes on under the hood of your application. It's common for developers to set up application logging for code exceptions within the application, but logging provides far more benefits than just bug tracking and should be used to alert administrators to issues that need their attention.

Log Alerts for Application and Server Performance

Any administrator who has dealt with performance issues will tell you that it's one of the most difficult problems to analyze and pinpoint a root cause for repair. Application Performance Monitoring (APM) tools can help, but logs serve as a real-time companion for tracking abnormal latency or usage surges. QA can do performance testing on your application, but these tests rarely represent a production environment that supports thousands of users concurrently.

Using log alerts, you can assess what's happening when an application's performance is diminished. It could be from a specific event such as a poorly optimized database query or when CPU usage spikes. Log these types of events, and you can not only identify when application performance will wane but also when server resources could be exhausted. Incorporating grok pattern matching can improve your ability to pinpoint and categorize these anomalies.

They also help you pinpoint components of your application that could be causing performance degradation. When CPU usage spikes to over 80%, set an alert to inform administrators. It could be something as simple as upgrading RAM or even your server's CPU, but having these log alerts will give you the ability to analyze the time of day and any patterns surrounding application procedures.

Log Alerts for Failed Sales Events

Most applications log exceptions so that developers can look back into errors and provide updates. But not every exception is created equally. The most critical events are those that impact business revenue. These events are the ones you should monitor closely and send alerts to the right response team.

It shouldn't be your customers calling to tell you that there are bugs in your application. Instead, logging integrated with APM logging ensures customer-impacting errors are surfaced immediately. With an alert on failed shopping cart activity, you have a way to contact a customer should they receive an error and bail on the shopping experience. Alerts are a great tool to salvage a lost customer due to application bugs.

But you also need alerts to tell you when components of your application are creating obstacles for customer shopping experiences. Alerts give you insights into the efficacy of your marketing and user experience. Use them generously to identify issues with your sales pages and find solutions for a better user experience.

Log Alerts for Security and Suspicious Activity

Developers are good at logging exceptions, but they don't usually account for security events. Security logs play a pivotal role in threat detection and incident response. Suspicious behaviors such as automated logins from account takeover tools (ATOs), repeated patterns of failed admin login attempts, ACL changes, or new accounts created can all indicate malicious activity.

With ATOs, an attacker will use automated software to log into a customer's account and use purchased credit card data to buy product to test if the card is viable. Logs should be used to detect this type of activity and alert administrators to suspicious events.

Any modifications to security permissions or authorization should also be logged and alerts sent. In SOC and SIEM workflows, this level of alerting becomes essential to defending cloud-native environments. Security events are a primary method organizations use to identify attacks before they become catastrophic data breaches.

How Do You Set Up Log Alerts?

You need the right data before you can set up alerts. The data that you log is up to you, but some standard data points are needed to create efficient logs that scale across your infrastructure. Some common data points include:

  • Date and time
  • Host name
  • Application name
  • Customer or account that experienced the error
  • IP address or other geographic markers for the visitor
  • Raw exception information
  • Line number where it occurred (if applicable)
  • Type of error (fatal, warning, etc)

You could write a logging application, or you could save time and configuration hassles by using LogDNA. With tools like Mezmo, log alerts can be combined with parsing, tagging, and grok pattern analysis to provide context-rich signals across distributed systems.

Instead of only using logs for basic events, an organization's best practices should include activity that gives administrators insight into patching issues before they become catastrophic instead of just using them to retroactively find solutions. LogDNA can provide you with the right tools and alerts that organizations can leverage to avoid revenue-impacting bugs and server errors.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines
    6 Steps to Implementing a Telemetry Pipeline
    Webinar Recap: Taming Data Complexity at Scale