How Fluentd Compares to LogDNA

4 MIN READ
MIN READ

Observing modern applications is challenging. Microservices allow for applications that are not only more distributed but are made up of a number of different languages, frameworks, and backend services. DevOps teams have far greater flexibility in where and how they deploy applications, but when it comes time to collect logs, this flexibility can quickly become a hurdle.

In today’s observability landscape, telemetry pipelines are critical for handling distributed log data efficiently. Fluentd is an open source tool that streams log data from multiple sources to multiple destinations. It is designed to be a unified logging layer, helping you centralize and route logs in a consistent way. With over 600 plugins, it supports a wide number of log types, log sources, log ingesters, and big data platforms.

In this article, we'll look at the features Fluentd offers and how it compares to Mezmo.

How Fluentd Works

Fluentd acts as a pipeline for log data to flow from log generators (such as a host or application) to log destinations (such as Elasticsearch). Sources send log messages to it, and Fluentd forwards those messages to a destination based on a set of configurable rules. As part of this process, it automatically converts each message from its original format into standard JSON, and finally into a format that can be read by the destination.

Fluentd Architecture

Fluentd's routing engine redirects messages to one or more destinations based on their source, format, or metadata. It also supports filtering messages, adding custom fields, and basic data stream manipulation. As a Cloud Native Computing Foundation (CNCF) project, Fluentd integrates with Docker and Kubernetes as a deployable container or Kubernetes DaemonSet.

It is often used in logging stacks as a replacement to Logstash, so much so that it's given rise to the EFK (Elasticsearch, Fluentd, Kibana) stack. This combination forms an open source siem-like architecture for security monitoring and analytics across multiple data sources. While this isn't the only way to use it, it's quickly becoming one of the most popular.

The Advantages of Fluentd

The main strength of Fluentd is that it's both source and destination agnostic. As long as your service has a relevant Fluentd plugin (of which there are hundreds), you can immediately begin transferring logs to or from it. Since it converts all incoming logs into standard JSON, it can connect any supported log source to any supported log destination.

Fluentd also supports some stream manipulation capabilities including log parsing, conversion, and data processing. You can define custom log formats, apply custom labels to individual messages for advanced filtering, and inject or remove fields. While it doesn't support complex processing, you can integrate it with stream processing software such as Norikra and Amazon Kinesis.

It is also lightweight, requiring only 40MB of RAM. There is an even lighter version called Fluent Bit that removes much of its functionality but only requires around 450KB of RAM. Fluent Bit only has around 30 plugins compared to Fluentd's 600+, but it supports many common log types and destinations including Elasticsearch, Splunk, InfluxDB, HTTP, and local file. This makes Fluent Bit an appealing option for smaller telemetry pipelines that prioritize low resource usage.

The Disadvantages of Fluentd

One of its main challenges is performance. While much of Fluentd is written in C, its plugin framework is written in Ruby. This adds flexibility but at the cost of speed; on standard hardware, each Fluentd instance can only process around 18,000 events per second. You could enable multi-process workers to increase throughput, but this may cause problems with plugins that don't support this feature.

As an open source product, it requires installation and setup before it can be used. There are community-created Deployments for quickly deploying a generic Fluentd instance to Docker or Kubernetes, but these must be configured, tested, and maintained for your specific requirements and infrastructure. When compared to commercial siem tools, Fluentd often requires more tuning and manual setup to reach enterprise performance levels.

Lastly, it adds an intermediate layer between your log sources and log destinations. This can slow down your logging pipeline, causing backups if your sources generate events faster than Fluentd can parse, process, and forward them. While it provides some additional buffering, it will drop new events once the buffer is full.

How Fluentd Compares to Mezmo

Fluentd and Mezmo both handle log ingestion, aggregation, and routing between services. However, Mezmo provides a number of benefits.

Setup

There's more to deploying Fluentd than simply running a Kubernetes Deployment. You also need to reconfigure your applications, services, and platforms to target Fluentd as a log destination. Fluent Bit makes this process easier for Docker and Kubernetes in particular, but also requires reconfiguration before it can collect host cluster logs. You end up having to become an expert in scaling Fluentd and Elasticsearch as your log volumes grow.With Mezmo, collecting host and cluster logs is as easy as running two commands. Deploying the Mezmo agent over Kubernetes lets you immediately begin streaming logs from all of your hosts and applications. Mezmo supports cloud platforms including AWS CloudWatch, Elastic Beanstalk, and Heroku. Mezmo can even ingest logs from Fluentd through the Mezmo Fluentd plugin.

There's more to deploying Fluentd than simply running a Kubernetes Deployment. You also need to reconfigure your applications, services, and platforms to target Fluentd as a log destination. Fluent Bit makes this process easier for Docker and Kubernetes in particular, but also requires reconfiguration before it can collect host cluster logs. You end up having to become an expert in scaling Fluentd and Elasticsearch as your log volumes grow.

With Mezmo, collecting host and cluster logs is as easy as running two commands. Deploying the Mezmo agent over Kubernetes lets you immediately begin streaming logs from all of your hosts and applications. Mezmo supports cloud platforms including AWS CloudWatch, Elastic Beanstalk, and Heroku. In hybrid telemetry pipeline environments, Mezmo can even ingest Fluentd logs through its dedicated Fluentd plugin.

Log Management Capabilities

Fluentd is strictly a log shipper. While it supports some log management capabilities, most of this functionality is only available through community-developed plugins, or by integrating it into a log management stack. Mezmo, on the other hand, is a complete log management solution capable of indexing, filtering, searching, graphing, and alerting on log data.

Although Fluentd supports hundreds of log formats and sources, Mezmo supports most common log formats including JSON, Syslog, Nginx, Apache, and Logfmt. You can also define custom log formats using the Custom Log Parser, a fast and simple step-by-step tool for defining custom log templates. Mezmo's integrated siem tools enhance visibility and allow real-time detection of anomalies across telemetry pipelines.

Speed

A single Fluentd instance running on commodity hardware handles around 18,000 events per second. According to its performance tuning guide, CPU is the main bottleneck for high-traffic instances. To handle larger workloads, Fluentd can launch multiple processes to utilize multi-threaded CPUs. However, not all plugins support multiple processes, which could lead to plugin-dependent bottlenecks and more complex configurations.

Mezmo handles over 20 terabytes of data per day, which breaks down to hundreds of thousands of events per second per customer. Events are processed by Mezmo's ingestion servers rather than the host itself, limiting the amount of CPU used by the host agent. This distributed architecture makes it an ideal telemetry pipeline for organizations requiring scalable performance and automated monitoring.

Conclusion

Fluentd is useful as a lightweight logging pipeline between a wide range of tools, services, and platforms. However, it's hampered by its performance and log analysis capabilities at scale. For teams managing complex telemetry pipelines or open source siem integrations, Mezmo offers faster setup, better automation, and deeper analytics through its unified observability platform.

If you are currently using Fluentd, you can easily ship your logs to Mezmo using the Mezmo Fluentd plugin. This lets you combine its extensive plugin library with Mezmo aggregation, analysis, and monitoring tools. To get started, download the Mezmo Fluentd plugin and start shipping your Fluentd logs to Mezmo in minutes.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    Mezmo + Catchpoint deliver observability SREs can rely on
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines