Managing Dynamic Data Flows Across Elasticsearch Clusters

4 MIN READ
MIN READ

Massively scaling free-text search has always been the holy grail in big data. Many software firms now face the burgeoning challenge of searching through previously untapped data sources and the current trend is far surpassing the petabyte scale. Here at Mezmo, formerly known as LogDNA, we manage free-text search for thousands of customers with distinct traffic profiles across a multitude of Elasticsearch clusters. The mapping of this customer data across elasticsearch clusters is dynamic and can become a huge headache to manage.  This article details our Elasticsearch Index Manager (ESIM) which automates the mapping of disparate customer data sources to particular indices segmented within or between elasticsearch clusters.

Mezmo's system maps customer accounts to a particular Elasticsearch cluster and an index on that cluster, this mapping will be referred to as the Account-Cluster Map (AC map). All components write customer data to the appropriate index and when that data needs to be searched upon each component queries multiple Elasticsearch clusters, stiches the responses into one, and passes the results downstream. We add entries to the AC map when a customer creates a new account based on their data flow rate and the available resources in the several Elasticsearch clusters we run. However, customer data flow is dynamic and fluctuates on hourly, daily, or even lengthier timescales. As customer data flow scales up or down certain Elasticsearch clusters are underutilized, while others are overburdened experiencing high throughput and slow insertion times. The AC map needs to be appropriately updated based on varying customer traffic patterns and cluster resource utilization.

Updating the AC map was largely a manual task for our operations team and was usually triggered by a spike in customer traffic, or revised over time as the clusters became unbalanced. As the number of environments and on-premise deployments managed by the operations team grew, this manual task became quite cumbersome for the operations team to execute along with their other responsibilities. This became the impetus for Elasticsearch Index Manager, a cron job that periodically scans data flow patterns and resource utilization, then balances account traffic to the appropriate clusters by updating the AC map.

Elasticsearch Index Manager begins by querying all available Elasticsearch clusters for their resources. This includes understanding of the number of shards and documents within each cluster, along with noting the total number of nodes available within the cluster. This is an insight to the supply available to ESIM and each cluster can be sorted by capacity. Next ESIM must characterize the data flows into the clusters so it queries the number of documents/min (throughput) and total documents/index (total volume) for each customer account. This informs ESIM about the total demand generated by the customers for the Elasticsearch resources available. Now ESIM should have enough information to move larger accounts to clusters with more capacity and smaller accounts to clusters with less capacity. If the largest clusters do not have enough resources to handle all the large accounts then ESIM can also suggest adding resources to the Elasticsearch clusters in order to scale them up.

Today Elasticsearch Index Manager enforces a threshold template set by the operations team in order to make all the decisions for when to move a customer up to a larger cluster or down to one with less resources. The template describes the “types” of each cluster, which include small, medium, and large, and thresholds for minimum and maximum values that trigger a move up from a smaller cluster to a larger one or vice-versa. Thresholds are set for total documents in an index, documents added per minute to the index, and total shard size of the index. Each threshold is defined as a min or max and has an interval associated to calculate averages. If total size reaches a max or min or average size over time reaches a max or min threshold then this triggers an update of the AC map. These thresholds are tweaked by the operations team in order to keep the clusters in a healthy state. As ESIM scans each account it detects if the account triggers any of the thresholds and will print out the evidence for how exactly that threshold was met over time. This allows us to run ESIM in two modes SUGGEST or ENFORCE. In SUGGEST mode ESIM will run as above, but it will only print evidence for the AC map updates it wants to make for each account. In ENFORCE mode ESIM will actually update the AC map with the recommendations set by the threshold template.

In a world where we manage petabytes of fluctuating data flows across multiple Elasticsearch clusters, routing the data to use resources efficiently becomes a major concern. The amount of manual intervention it requires to manage a system like this can be quite draining on operators. An automated system that attempts to balance dynamic traffic patterns across clusters with varying resources can help alleviate the burden. At Mezmo, implementing ESIM has improved resource utilization across clusters and minimized the time that operations spend on responding to customer traffic spikes. In my experience, the best solution to search free-text big data is to horizontally scale Elasticsearch clusters. I’d love to hear how you manage petabytes of data across your elastic search clusters.

If you'd like to learn more you can check out our on-demand Webinar: Elasticsearch Index Manager.

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    The Observability Stack is Collapsing: Why Context-First Data is the Only Path to AI-Powered Root Cause Analysis
    Mezmo + Catchpoint deliver observability SREs can rely on
    Mezmo’s AI-powered Site Reliability Engineering (SRE) agent for Root Cause Analysis (RCA)
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines