Why Logging Matters Throughout the Software Development Life Cycle (SDLC)

4 MIN READ
MIN READ

There are multiple phases in the software development process that need to be completed before the software can be released into production. Those phases, which are typically iterative, are part of what we call the software development life cycle, or SDLC. During this cycle, developers and software analysts also aim to satisfy nonfunctional requirements like reliability, maintainability, and performance.

One of the most critical services that developers normally include in their applications is logging. Logging is a way to expose contextual information along with the main application runtime. When developers distribute those applications in a live environment, they will collect and store logs, either locally or in an external service.

There’s usually not much debate about whether or not to include logging, because almost everyone expects it to be included by default. The discussion that really matters revolves around how to include logging in a way that maximizes its value not only in delivering the platform successfully but also in maintaining it throughout its lifetime.

When done right, logging isn’t just for error tracking—it powers full APM logging, enables early threat detection through security logs, and drives smarter decisions through telemetry pipelines that normalize and route data across platforms. 

Keep reading for an explanation of some of the most compelling reasons why logging matters throughout the SDLC.

Logging Improves Software Maintainability

Developers use logs to perform several crucial tasks like debugging, load testing, and performance testing. They almost always capture log errors and fatal exceptions (because those are usually the most important) and then export them to external services like Mezmo, formerly known as LogDNA, for further processing.

However, if you only log errors or fatal exceptions, you can miss significant information. To enable more extensive logging, you can utilize code libraries, which offer a proper set of methods and filters to configure the log information based on a level of sensitivity. Developers can then preconfigure apps to collect or store logs with a specific format and log level.

This also makes log rotation easier to implement across environments, allowing teams to control the size and retention policies of logs in a consistent, automated way.

Utilizing different log levels in different places throughout the codebase allows developers to handle two important things. First, it allows them to configure the sensitivity of the information that gets stored to match the parameters of what they aim to capture. For example, they can include stack traces or detailed context using debug or trace log levels. Second, it allows developers to configure the sensitivity of the log collectors or external services to respond to events that satisfy specific criteria and then forward them into relevant channels.

The aim is to make sure that there will be instances in the code where logging operations are not just distinct actions, but also ways to communicate intent throughout the SDLC. That way, future maintainers can refactor the code easier without breaking any assumptions about the logging operations.

To use the Mezmo Logger instance directly, you would type:

    logger.debug("SSL Purchase Created for '#{domain.name}'")

Instead of doing that, you need to use a user activity logging module to wrap those events into methods, like this:

    module ActivityLogging extend ActiveSupport::Concern def log_ssl_purchase(domain) logger.debug("SSL Purchase Created for '#{domain.name}'") endend

That way, if you try to change the log details or the level for the SSL Purchase event, you will only have to revise it in one place. Using logging facilities like this is a good way to logically scope them and configure them in a more granular way, thus making the application easier to maintain. 

Logging Helps with Migration Phases

You can use logging to record how and when certain method calls are made and also to monitor parts of the code from which you want to migrate. You’ll want to log these often and ascertain how much of the existing system is dependent on them.

During migrations, telemetry pipelines can also help correlate these changes across services and environments, minimizing blind spots by normalizing logs, metrics, and traces in one flow.

Let’s walk through some typical use cases:

Logging Deprecated Features

Our first example is deprecation log messages, wherein we log the usage of functions that are deprecated and slated to be removed in future versions. One way to do this is to wrap the usage of deprecated functions with function decorators. When an attempt is made to call this function, we can log the call and record it into the stream of events. This is what a rough implementation looks like in Javascript using the class decorator syntax for conciseness:

    @deprecated({useInstead: ‘UserManagementService’, since: ‘v1.0’, onCall: (params) => logDeprecatedEvent(params)}) class UserApiService { static getUsers() { } } function logDeprecatedEvent(params): void { Logger.getInstance().info(“Deprecated call of function with params: ” + params.toString()) }
    As far as the client knows, the UserApiService will still work as expected, but it will now log the call in logDeprecatedEvent to capture a depreciation event.

As far as the client knows, the UserApiService will still work as expected, but it will now log the call in logDeprecatedEvent to capture a depreciation event.

Logging Feature Flag Usage

You can log information whenever a feature flag is modified and used to expose new features to users. By doing so, you can gain a more thorough understanding of how the usage of new features affects the existing application performance or reliability. For example, once you’ve enabled a flag, you might log this information:

    logger.info("Feature Flag", {"feature_flag_update": {"name": '#{flag.name}', "from": "'#{flag.isEnabled}'", "to":"'#{!flag.isEnabled}'"}})

Then, using this as a guidepost, you can record any performance or related changes in the application and measure their success or failure.

Logging Helps with Managing New Work vs Technical Debt

Technical debt is a term that developers use to describe unfinished work that they have postponed due to time or technical limitations. It’s relatively common to produce working code with few extra dependencies, quality issues, coupling, or inflexible patterns. Trying to refactor those pieces into a more reusable component may prove to be counter-productive, since it might not be very valuable to the end users.

Ultimately, technical debt can become an issue if left unchecked. For example, it can become a problem if you write code without considering reusability, or if you add feature flags here and there without removing them in later stages.

Effective APM logging helps strike a balance between innovation and oversight by showing real-time performance indicators, security logs, and error trends that reveal when tech debt starts to degrade reliability.

Logs can help manage technical debt by enabling you to compare existing nonfunctional requirements and metrics like performance, error recovery, and availability metrics. Developers can assess whether a code change improved reliability or made the system more fragile—insights that are often missed without persistent log and telemetry pipeline coverage.

Next Steps with Logging

The aforementioned reasons for including logging are excellent illustrations of just how critical it is to deliver maintainable and reliable software. To realize the enormous potential of logging and improve the SDLC process, you can always rely on a dedicated logging platform that offers a variety of related services – like the one from Mezmo.

In addition to supporting telemetry pipelines and APM logging, Mezmo allows teams to filter and query log streams, set up alerting, and securely store security logs with full compliance visibility.

Their boards and graphs give you a completely customizable visualization dashboard that will allow you to present high-level, comprehensive metrics to stakeholders. By pairing those with time-shifted graphs, you can see how an app performs across different versions. Start a free trial to see for yourself!

Table of Contents

    Share Article

    RSS Feed

    Next blog post
    You're viewing our latest blog post.
    Previous blog post
    You're viewing our oldest blog post.
    What is Active Telemetry
    Launching an agentic SRE for root cause analysis
    Paving the way for a new era: Mezmo's Active Telemetry
    The Answer to SRE Agent Failures: Context Engineering
    Empowering an MCP server with a telemetry pipeline
    The Debugging Bottleneck: A Manual Log-Sifting Expedition
    The Smartest Member of Your Developer Ecosystem: Introducing the Mezmo MCP Server
    Your New AI Assistant for a Smarter Workflow
    The Observability Problem Isn't Data Volume Anymore—It's Context
    Beyond the Pipeline: Data Isn't Oil, It's Power.
    The Platform Engineer's Playbook: Mastering OpenTelemetry & Compliance with Mezmo and Dynatrace
    From Alert to Answer in Seconds: Accelerating Incident Response in Dynatrace
    Taming Your Dynatrace Bill: How to Cut Observability Costs, Not Visibility
    Architecting for Value: A Playbook for Sustainable Observability
    How to Cut Observability Costs with Synthetic Monitoring and Responsive Pipelines
    Unlock Deeper Insights: Introducing GitLab Event Integration with Mezmo
    Introducing the New Mezmo Product Homepage
    The Inconvenient Truth About AI Ethics in Observability
    Observability's Moneyball Moment: How AI Is Changing the Game (Not Ending It)
    Do you Grok It?
    Top Five Reasons Telemetry Pipelines Should Be on Every Engineer’s Radar
    Is It a Cup or a Pot? Helping You Pinpoint the Problem—and Sleep Through the Night
    Smarter Telemetry Pipelines: The Key to Cutting Datadog Costs and Observability Chaos
    Why Datadog Falls Short for Log Management and What to Do Instead
    Telemetry for Modern Apps: Reducing MTTR with Smarter Signals
    Transforming Observability: Simpler, Smarter, and More Affordable Data Control
    Datadog: The Good, The Bad, The Costly
    Mezmo Recognized with 25 G2 Awards for Spring 2025
    Reducing Telemetry Toil with Rapid Pipelining
    Cut Costs, Not Insights:   A Practical Guide to Telemetry Data Optimization
    Webinar Recap: Telemetry Pipeline 101
    Petabyte Scale, Gigabyte Costs: Mezmo’s Evolution from ElasticSearch to Quickwit
    2024 Recap - Highlights of Mezmo’s product enhancements
    My Favorite Observability and DevOps Articles of 2024
    AWS re:Invent ‘24: Generative AI Observability, Platform Engineering, and 99.9995% Availability
    From Gartner IOCS 2024 Conference: AI, Observability Data, and Telemetry Pipelines
    Our team’s learnings from Kubecon: Use Exemplars, Configuring OTel, and OTTL cookbook
    How Mezmo Uses a Telemetry Pipeline to Handle Metrics, Part II
    Webinar Recap: 2024 DORA Report: Accelerate State of DevOps
    Kubecon ‘24 recap: Patent Trolls, OTel Lessons at Scale, and Principle Platform Abstractions
    Announcing Mezmo Flow: Build a Telemetry Pipeline in 15 minutes
    Key Takeaways from the 2024 DORA Report
    Webinar Recap | Telemetry Data Management: Tales from the Trenches
    What are SLOs/SLIs/SLAs?
    Webinar Recap | Next Gen Log Management: Maximize Log Value with Telemetry Pipelines
    Creating In-Stream Alerts for Telemetry Data
    Creating Re-Usable Components for Telemetry Pipelines
    Optimizing Data for Service Management Objective Monitoring
    More Value From Your Logs: Next Generation Log Management from Mezmo
    A Day in the Life of a Mezmo SRE
    Webinar Recap: Applying a Data Engineering Approach to Telemetry Data
    Dogfooding at Mezmo: How we used telemetry pipeline to reduce data volume
    Unlocking Business Insights with Telemetry Pipelines
    Why Your Telemetry (Observability) Pipelines Need to be Responsive
    How Data Profiling Can Reduce Burnout
    Data Optimization Technique: Route Data to Specialized Processing Chains
    Data Privacy Takeaways from Gartner Security & Risk Summit
    Mastering Telemetry Pipelines: Driving Compliance and Data Optimization
    A Recap of Gartner Security and Risk Summit: GenAI, Augmented Cybersecurity, Burnout
    Why Telemetry Pipelines Should Be A Part Of Your Compliance Strategy
    Pipeline Module: Event to Metric
    Telemetry Data Compliance Module
    OpenTelemetry: The Key To Unified Telemetry Data
    Data optimization technique: convert events to metrics
    What’s New With Mezmo: In-stream Alerting
    How Mezmo Used Telemetry Pipeline to Handle Metrics
    Webinar Recap: Mastering Telemetry Pipelines - A DevOps Lifecycle Approach to Data Management
    Open-source Telemetry Pipelines: An Overview
    SRECon Recap: Product Reliability, Burn Out, and more
    Webinar Recap: How to Manage Telemetry Data with Confidence
    Webinar Recap: Myths and Realities in Telemetry Data Handling
    Using Vector to Build a Telemetry Pipeline Solution
    Managing Telemetry Data Overflow in Kubernetes with Resource Quotas and Limits
    How To Optimize Telemetry Pipelines For Better Observability and Security
    Gartner IOCS Conference Recap: Monitoring and Observing Environments with Telemetry Pipelines
    AWS re:Invent 2023 highlights: Observability at Stripe, Capital One, and McDonald’s
    Webinar Recap: Best Practices for Observability Pipelines
    Introducing Responsive Pipelines from Mezmo
    My First KubeCon - Tales of the K8’s community, DE&I, sustainability, and OTel
    Modernize Telemetry Pipeline Management with Mezmo Pipeline as Code
    How To Profile and Optimize Telemetry Data: A Deep Dive
    Kubernetes Telemetry Data Optimization in Five Steps with Mezmo
    Introducing Mezmo Edge: A Secure Approach To Telemetry Data
    Understand Kubernetes Telemetry Data Immediately With Mezmo’s Welcome Pipeline
    Unearthing Gold: Deriving Metrics from Logs with Mezmo Telemetry Pipeline
    Webinar Recap: The Single Pane of Glass Myth
    Empower Observability Engineers: Enhance Engineering With Mezmo
    Webinar Recap: How to Get More Out of Your Log Data
    Unraveling the Log Data Explosion: New Market Research Shows Trends and Challenges
    Webinar Recap: Unlocking the Full Value of Telemetry Data
    Data-Driven Decision Making: Leveraging Metrics and Logs-to-Metrics Processors
    How To Configure The Mezmo Telemetry Pipeline
    Supercharge Elasticsearch Observability With Telemetry Pipelines
    Enhancing Grafana Observability With Telemetry Pipelines
    Optimizing Your Splunk Experience with Telemetry Pipelines
    Webinar Recap: Unlocking Business Performance with Telemetry Data
    Enhancing Datadog Observability with Telemetry Pipelines
    Transforming Your Data With Telemetry Pipelines
    6 Steps to Implementing a Telemetry Pipeline
    Webinar Recap: Taming Data Complexity at Scale